Persistent Hall response in a quantum quench
نویسندگان
چکیده
Out-of-equilibrium systems can host phenomena that transcend the usual restrictions of equilibrium systems. Here we unveil how out-of-equilibrium states, prepared via a quantum quench, can exhibit a non-zero Hall-type response that persists at long times, and even when the instantaneous Hamiltonian is time reversal symmetric; both these features starkly contrast with equilibrium Hall currents. Interestingly, the persistent Hall effect arises from processes beyond those captured by linear response, and is a signature of the novel dynamics in out-of-equilibrium systems. We propose quenches in two-band Dirac systems as natural venues to realize persistent Hall currents, which exist when either mirror or time-reversal symmetry are broken (before or after the quench). Its long time persistence, as well as sensitivity to symmetry breaking, allow it to be used as a sensitive diagnostic of the complex out-equilibrium dynamics readily controlled and probed in cold-atomic optical lattice experiments.
منابع مشابه
Supplementary Material to: Remnant geometric Hall response in a quantum quench
We provide a detailed calculation, and description of the quench and probe protocol described in the letter. The protocol described in letter consists of the following steps: (1) prepare the state in the ground state of some Hamiltonian |ψ0〉; (2) at t = 0 quench a parameter in that Hamiltonian; (3) pulse the evolved wave function at t = t1 (called |ψ1〉) by letting k → k − eA; and (4) measure Ha...
متن کاملRemnant Geometric Hall Response in a Quantum Quench.
Out-of-equilibrium systems can host phenomena that transcend the usual restrictions of equilibrium systems. Here, we unveil how out-of-equilibrium states, prepared via a quantum quench in a two-band system, can exhibit a nonzero Hall-type current-a remnant Hall response-even when the instantaneous Hamiltonian is time reversal symmetric (in contrast to equilibrium Hall currents). Interestingly, ...
متن کاملبررسی اثر صحیح کوانتومی هال در سیستمهای دارای ناخالصی به روش تبدیل پیمانهای در حضور نقطههای کوانتومی
In this paper we study the integer quantum Hall effect (IQHE) on the systems with different types of impurities in delta and gaussian forms. The Landau energy levels in the presence of impurity split in two different levels,the extended and localized levels, emerging then the Hall step. Finally, we add a specified form of a quantum dot potential to a system with impurity, and observed that incr...
متن کاملVoltage Induced Dynamical Quantum Phase Transitions in Exciton Condensates
We explore non-analytic quantum phase dynamics of dipolar exciton condensates formed in a system of 1D quantum layers subjected to voltage quenches. We map the exciton condensate physics on to the pseudospin ferromagnet model showing an additional oscillatory metastable and paramagnetic phase beyond the well-known ferromagnetic phase by utilizing a time-dependent, nonperturbative theoretical mo...
متن کاملQuasiparticle explanation of “weak thermalization” regime under quench in a non-integrable quantum spin chain
Eigenstate Thermalization Hypothesis provides one picture of thermalization in a quantum system by looking at individual eigenstates. However, it is also important to consider how local observables reach equilibrium values dynamically. Quench protocol is one of the settings to study such questions. A recent numerical study [Bañuls, Cirac, and Hastings, Phys. Rev. Lett. 106, 050405 (2011)] of a ...
متن کامل